The C terminus of lens aquaporin 0 interacts with the cytoskeletal proteins filensin and CP49.

نویسندگان

  • Kristie M Lindsey Rose
  • Robert G Gourdie
  • Alan R Prescott
  • Roy A Quinlan
  • Rosalie K Crouch
  • Kevin L Schey
چکیده

PURPOSE Aquaporin 0 (AQP0), the most abundant membrane protein in the lens, is a water-permeable channel, has a role in fiber cell adhesion, and is essential for fiber cell structure and organization. The purpose of this study was to identify proteins that interact with the C terminus of AQP0, by using a proteomics approach, and thus further elucidate the role of AQP0 in the human lens. METHODS AQP0 C-terminal peptides and AQP0 antibody affinity chromatography were used for affinity purification of interacting human lens proteins. Purified proteins were digested with trypsin, analyzed by liquid chromatography (LC)-tandem mass spectrometry and identified after database searching and manual examination of the mass spectral data. Colocalization of AQP0 with filensin and CP49, two proteins identified after mass spectrometric analysis, were examined by immunoconfocal and immunoelectron microscopy of lens sections. RESULTS The proteomics approach used to identify affinity-purified proteins revealed the lens-specific intermediate filament proteins filensin and CP49. With immunoconfocal microscopy, regions of colocalization of AQP0 with filensin and CP49 at the fiber cell plasma membrane in the lens cortex were defined. Immunoelectron microscopy confirmed that filensin and AQP0 were present in the same membrane compartments. CONCLUSIONS These studies suggest a novel interaction between an aquaporin water channel and intermediate filaments, an interaction through which AQP0 may maintain lens fiber cell shape and organization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posttranslational modifications of the bovine lens beaded filament proteins filensin and CP49.

PURPOSE The lens beaded filament proteins filensin and CP49 are phosphorylated proteins that undergo proteolytic degradation with fiber cell age; however, the specific sites of modifications remain largely unknown. The purpose of this study was to identify posttranslational modifications (PTMs) in bovine lens beaded filament proteins. METHODS Filensin and CP49 were enriched by urea extraction...

متن کامل

Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium

PURPOSE The differentiated lens fiber cell assembles a filamentous cytoskeletal structure referred to as the beaded filament (BF). The BF requires CP49 (bfsp2) and filensin (bfsp1) for assembly, both of which are highly divergent members of the large intermediate filament (IF) family of proteins. Thus far, these two proteins have been reported only in the differentiated lens fiber cell. For thi...

متن کامل

Tmod1 and CP49 Synergize to Control the Fiber Cell Geometry, Transparency, and Mechanical Stiffness of the Mouse Lens

The basis for mammalian lens fiber cell organization, transparency, and biomechanical properties has contributions from two specialized cytoskeletal systems: the spectrin-actin membrane skeleton and beaded filament cytoskeleton. The spectrin-actin membrane skeleton predominantly consists of α₂β₂-spectrin strands interconnecting short, tropomyosin-coated actin filaments, which are stabilized by ...

متن کامل

The effect of the interaction between aquaporin 0 (AQP0) and the filensin tail region on AQP0 water permeability

PURPOSE To study the interaction between the lens-specific water channel protein, aquaporin 0 (AQP0) and the lens-specific intermediate filament protein, filensin, and the effect of this interaction on the water permeability of AQP0. The effect of other factors on the interaction was also investigated. METHODS Expression plasmids were constructed in which glutathione-S-transferase (GST) was f...

متن کامل

Targeted deletion of the lens fiber cell-specific intermediate filament protein filensin.

PURPOSE To determine the function of the lens fiber cell-specific cytoskeletal protein, filensin, in lens biology. METHODS Targeted genomic deletion was used to delete exon 1 and the transcriptional start site of the filensin gene. Resultant chimeric animals were bred to homozygosity for the mutant allele. These animals were outbred to mice bearing the wild-type CP49 alleles to eliminate the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2006